The Combative Accretion Model - Multiobjective Optimisation Without Explicit Pareto Ranking

نویسندگان

  • Adam Berry
  • Peter Vamplew
چکیده

Contemporary evolutionary multiobjective optimisation techniques are becoming increasingly focussed on the notions of archiving, explicit diversity maintenance and population-based Pareto ranking to achieve good approximations of the Pareto front. While it is certainly true that these techniques have been effective, they come at a significant complexity cost that ultimately limits their application to complex problems. This paper proposes a new model that moves away from explicit population-wide Pareto ranking, abandons both complex archiving and diversity measures and incorporates a continuous accretion-based approach that is divergent from the discretely generational nature of traditional evolutionary algorithms. Results indicate that the new approach, the Combative Accretion Model (CAM), achieves markedly better approximations than NSGA across a range of well-recognised test functions. Moreover, CAM is more efficient than NSGAII with respect to the number of comparisons (by an order of magnitude), while achieving comparable, and generally preferable, fronts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pareto Archived Evolution Strategy : A New Baseline Algorithm for Pareto Multiobjective Optimisation

Most popular evolutionary algorithms for multiobjective optimisation maintain a population of solutions from which individuals are selected for reproduction. In this paper, we introduce a simpler evolution scheme for multiobjective problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible non-trivial algorithm capable of generating di...

متن کامل

Agent-based Evolutionary Multiobjective Optimisation

This work presents a new evolutionary approach to searching for a global solution (in the Pareto sense) to multiobjective optimisation problem. Novelty of the method proposed consists in the application of an evolutionary multi-agent system (EMAS) instead of classical evolutionary algorithms. Decentralisation of the evolution process in EMAS allows for intensive exploration of the search space,...

متن کامل

A Multiobjective Genetic Algorithm for Radio Network Optimization

Engineering of mobile telecommunication networks endures two major problems: the design of the network, and the frequency assignment. We address the first problem in this paper, which has been formulated as a multiobjective constrained combinatorial optimisation problem. We propose a genetic algorithm that aims to approximate the Pareto frontier of the problem. Advanced techniques have been use...

متن کامل

Preferences and their application in evolutionary multiobjective optimization

The paper describes a new preference method and its use in multiobjective optimisation. These preferences are developed with a goal to reduce the cognitive overload associated with the relative importance of a certain criterion within a multiobjective design environment involving large numbers of objectives. Their successful integration with several genetic algorithm–based design search and opt...

متن کامل

A Novel Ranking Method Based on Subjective Probability Theory for Evolutionary Multiobjective Optimization

Most of the engineering problems are modeled as evolutionary multiobjective optimization problems, but they always ask for only one best solution, not a set of Pareto optimal solutions. The decision maker’s subjective information plays an important role in choosing the best solution from several Pareto optimal solutions. Generally, the decision-making processing is implemented after Pareto opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005